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Abstract 
 

This research explores the use of fuzzy membership values generated by the Soil Landscape 
Inference Model (SoLIM) to predict detailed spatial variation of soil properties. Two fuzzy 
membership based approaches were used to predict soil property values over space. The first 
is a fuzzy membership weighted average model with which the soil property value at a 
location is the weighted average of the fuzzy membership values and the typical soil property 
values of the soil types. This approach has two models: one based on the typical values from 
soil description and the other based on the property values at the locations with maximum 
fuzzy membership values. The second approach is a multiple linear regression with fuzzy 
membership values where by the soil property value at a location is predicted using a 
regression between the soil property and fuzzy membership values. These models were then 
compared with a predictive model based on existing soil survey data and a predictive model 
based on multiple linear regression with terrain attributes. A case study in the Driftless Area 
of southwestern Wisconsin showed that that over flat areas where relationships between soil 
property values and terrain attributes approach linear, linear regression with topographic 
variables would work well, but over areas of stronger relief where relationships between soil 
property values and terrain attributes are non-linear, regression with fuzzy membership values 
is an improvement. However, from the perspectives of data requirement and able to handle 
non-linearity, the weighted average model would have clear advantages over the other two. 
 
1. Introduction 
 
Soil property maps generated from conventional soil survey maps are no longer sufficient 
because they often do not represent the spatial variability of soil properties at the level of 
detail needed for many applications.  Statistical/geostatistical methods have been used to 
provide detail spatial variability of soil properties (McBratney and Webster, 1986; Webster, 
1991; Moore et al., 1993; Gessler et al., 2000). However, these techniques rely too heavily on 
the assumption of linearity and stationarity. It is unlikely that a direct linear relationship exists 
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between terrain attributes and soil property values; in fact, the relationships between soil 
property variation and underlying terrain variables can be very complex (Lark, 1999). The 
linearity and stationarity assumption and the data requirements of these techniques present 
stiff challenges to their application over large and diverse landscapes.  
 
This research explores the possibilities of using fuzzy membership values generated by the 
Soil Landscape Inference Model (SoLIM) (Zhu, 1997; Zhu et al., 2001) to predict soil 
property values in areas where the relationship between soil property values and terrain 
attributes is perceived to be non-linear. The soil similarity vector of a local soil derived using 
the SoLIM approach can be viewed as a non-linear transformation of environmental variables 
based on expert knowledge of soil-landscape relationships.  Variation of soil properties over 
landscapes with well-defined landscape positions and distinct soil types may be considered 
highly non-linear. Soil properties on these landscapes tend to change gradually within 
landscape positions and quickly in transition zones between landscape positions.  The premise 
of this research is that the inherent non-linearity of soil similarity vectors can be used to 
describe and model non-linear variation in soil property values. 
 
2. Material and Methods 
 
2.1 Soil similarity vector and SoLIM 
 
SoLIM is a predictive approach to soil mapping. It consists of two major components:  a 
similarity model for representing soil spatial variation and a set of inference techniques for 
populating the similarity model (Zhu, 1997). Under the similarity model a given area is 
represented as a raster layer.  The size of each grid (pixel) in the raster layer is often very 
small (such as 10 meters or 30 meters on each side). The soil at a given pixel (i,j) is then 
represented by an n-element similarity vector (referred to as soil similarity vector), Sij = (Sij
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over the area and Sij
k is the similarity value of the soil at pixel (i,j) to the prescribed soil class 

k.  It must be pointed out that Sij
k is an index which measures the similarity between the local 

soil at (i,j) to soil class k.  The more similar a soil is to a prescribed soil class, the higher its 
similarity value (fuzzy membership).  Thus, a similarity value of 1.0 means that the soil at (i,j) 
is a typical instance of the prescribed class while a similarity value of 0.0 means that the local 
soil does not belong to the prescribed soil class at all. With this similarity model, spatial 
variation of soil can be described at a very detailed level. The coupling of a raster 
representation in the spatial domain with a similarity representation in the attribute domain 
allows the spatial variation of soils to be expressed and retained at much greater details than it 
can be in conventional soil maps. 
 
The SoLIM approach for populating the similarity model is based on the classic concept that 
soil is a product of interaction among climatic factors, landform, parent material, organism, and 
hydrological factors over time (Jenny, 1980; Hudson, 1992).  In other words, there exist 
relationships between soils and the environmental conditions under which they formed. We 
may infer the soil type at a given location if we have local environmental conditions and the 
knowledge of how these environment conditions are related to the soils. Zhu and Band (1994) 
and Zhu (2000) predict soil series distribution with the use of artificial intelligence (AI) and 
GIS/remote sensing (RS) techniques.  AI techniques can be used to extract knowledge on soil-
environment relationships (Zhu, 1999; Zhu, 2000; Qi and Zhu, 2003).  GIS/RS techniques were 
used to characterize soil formative environmental conditions (Zhu et al., 1996). The extracted 



 
knowledge and the characterized environmental conditions can then be linked through a set of 
inference techniques to derive the soil similarity vector for each location (pixel) (Zhu and Band, 
1994). 
 
2.2 Methods 
 
Two fuzzy membership based approaches were used to predict soil property values over space. 
One is a fuzzy membership weighted average model with which the soil property value at a 
location is the weighted average of the fuzzy membership values and the typical soil property 
values of the soil types (Equation 1). 
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where V ij is the predicted soil property value at location (i,j), Sk
i,j  is the fuzzy membership 

value in soil type k for the soil at the given location, and vk is the typical soil property value 
for soil type k.  This approach has two models: one uses the representative value of the given 
soil property from soil description as vk (referred to as the weighted average model) and the 
other uses the property value at the location where the fuzzy membership value in the given 
soil series is the highest (maximum membership model). The other approach is a multiple 
linear regression with which the soil property value at a location is predicted using a 
regression between the soil property and fuzzy membership values in each of the soil classes 
(membership regression model).  
 
The above three models were then compared with a predictive model based on existing soil 
survey data (soil map model) and that based on multiple linear regression with terrain 
attributes (terrain regression model). The soil map model uses the typical soil property values 
based on the existing soil survey of the area to approximate the soil property values at local 
sites.  The typical values of the soil properties for the soil series in each of these map units 
were determined based on the Map Unit Interpretation Record (MUIR) database (Soil Survey 
Staff, 1997). 
 
For the terrain regression model, elevation, slope, aspect, planform curvature, and profile 
curvature were used as the independent variables.  While other topographic variables likely 
have some influence on soil formation in this study area, only these five were used in the 
process of creating the SoLIM-generated soil map (Smith, 2004). 
 
The following soil properties were used for each of the models: A-horizon sand and clay 
content, Bt1-horizon sand and clay content, depth to Bt1-horizon, loess thickness, and depth to 
weathered bedrock. 
 
2.3 Study area and research data 
 
The study was conducted in a watershed in the Driftless Area of southwestern Wisconsin 
(Figure 1).  The study area consists of two distinct but related areas: the first has gently rolling 
terrain consisting of a thin layer of loess over clayey residuum underlain by fractured 
dolomite, and soil classes that differ primarily in depth to bedrock; the second has steeper 



 
terrain, more variable soil types, and occurs in places where stream channels have cut through 
the dolomite to expose the sandstone below. 
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Figure 1: Topography of the study area and the location of field transects 

 
In order to characterize the landscape, two representative transects were established: one on 
the gently rolling summit (the “Galena transect”), and one on the steeply sloping backslope 
(the “St. Peter transect”) (Figure 1).  These transects were based on preliminary field 
investigations and existing soil maps and designed to capture the maximum amount of soil 
variation possible.  The Galena transect starts from a convex position on the summit and 
extends across the summit, down the shoulder and into a concave drainage way and consists 
of 32 sample locations.  The St. Peter transect starts on a shoulder, extends down the steep 
south-facing backslope to a concave footslope and into the drainage way.  It resumes at the 
base of the north-facing slope and extends through the footslope, up the backslope, and 
terminates 10 meters past the transition from backslope to shoulder.  43 observations were 
made on the transect: 28 on the south facing slope and 15 on the north-facing slope. 
 
Fuzzy membership maps of soil series for the area created in a different study (Smith, 2004) 
were used to create the soil similarity vectors for locations along these two transects. These 
soil similarity vectors were then used in three membership based models. 
 
3. Results and Discussion 
 
Tables 1 and 2 compare the mean absolute errors of predictions from all five models across 
the 7 soil properties used along the two transects. Over the gently rolling area (along the 
Galena transect), the terrain regression model produces mean absolute error (MAE) values 
ranging from 1.1 to 9.0 times lower than other groups of models.  In additions, R2 values for 
this model range from 0.1 to 0.3 higher than other groups of models. Over the steep area 
(along the St. Peter transect), the membership regression model had the MAE values ranging 
from 1.5 to 17 times lower than other models and the R2 values for the model range from 0.1 
to 0.8 higher than other groups of models.  



 
 
From the above we can observe that in predicting soil property linear regression models based 
on the terrain attributes may be limited to areas with gentle landscapes. For steep landscapes, 
the relationships between soil property and terrain attributes can be highly non-linear and non-
linear transformation of the terrain variables would be required if satisfactory prediction is to 
be made. 
 
The maximum membership model produced reasonably good performance measures 
comparing to the two statistical models. One must realize that the two statistical models 
(terrain-based and membership based) use all field points in model development. This means 
that the error measures (or performance measures) are those of model development, not those 
of model validation. The maximum membership model only used one field sample per soil 
series (the sample with the maximum membership in that series) for model development. In 
addition, the performance measures for the maximum membership model are those of model 
validation (that is, only the field samples, not used in the model development, were used to 
compute the performance measures). In this sense the maximum membership model may have 
out performed both regression models. From the field data requirement perspective, the 
maximum membership model has clear advantages over the statistical models. 
 

Table 1: MAE for all selected models - Galena transect 

Property Soil Map 
Model 

Weighted 
Average  Model

Maximum 
Membership Model

Terrain 
Regression 

Model 

Membership 
Regression 

Model 

A-horizon Sand 5.53 5.56 6.68 0.74 0.73 

A-horizon Clay 1.73 2.00 1.69 1.31 1.90 

Bt1-horizon Sand 6.12 2.62 1.15 1.02 1.14 

Bt1-horizon Clay 4.83 5.67 4.95 3.75 4.83 

Depth to Bt1 10.16 9.37 8.68 7.67 8.02 

Loess Thickness 30.32 24.35 14.81 9.46 14.29 

Depth to Cr 29.37 24.26 16.23 11.56 15.36 
           Note:  Cells highlighted in yellow have the lowest MAE values for each soil property.  Cells   
             highlighted in green have the second lowest MAE for each soil property. 
 

Table 2: MAE for all selected models – St. Peter transect 

Property Soil Map 
Model 

Weighted 
Average Model

Maximum 
Membership Model

Terrain 
Regression 

Model 

Membership 
Regression 

Model 

A-horizon Sand 18.35 15.38 7.62 6.72 4.81 

A-horizon Clay 5.63 5.33 3.04 3.57 1.63 

Bt1-horizon Sand 15.89 16.21 10.98 10.97 4.3 

Bt1-horizon Clay 6.99 5.61 17.12 3.67 2.28 

Depth to Bt1 13.35 12.24 10.86 9.11 9.28 

Loess Thickness 56.29 59.78 5.98 4.88 3.45 

Depth to Cr 17.72 20.22 17.94 15.48 9.37 

 
4. Conclusions 
 
The implications are that linear regression models based on topographic variables might be 
appropriate over gentle landscapes where the relationships between soil property values and 
terrain attributes approach linear. For areas with steep landscape, linear regression models 
based on topographic variables might break down. Non-linear transformation of the 
topographic variables is needed for the linear regression models to be effective. This study 



 
further suggests that weighted average model using maximum fuzzy membership values as a 
way to define the representative soil property values would have clear advantages over the 
statistical models from the perspectives of field data requirement and ability in handling non-
linearity of the relationships between soil properties and terrain variables. 
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