Geography 579

GIS and Spatial Analysis

University of Wisconsin-Madison

Fall, 2005

Instructor:

Professor A-Xing Zhu
Department of Geography
Rm 255 Science Hall
Email: axing@geography.wisc.edu
Tel: 262-0272

Class Website: http://solim.geography.wisc.edu/~axing/teaching/geog579/index.html

Schedule and Location:

Lecture Hour:

- Tuesdays 1:00 p.m. - 2:15 p.m. 444 Science Hall
- Thursdays 1:00 p.m. - 2:15 p.m. 444 Science Hall

Lab Hour:

See Lab Syllabus

Office Hours:

- Tuesdays: 10:30 a.m. - 12:00 p.m.
- Thursdays: 2:30 p.m. - 3:30 p.m.

1. Course Description:

This is an advanced GIS course covering analytical methods used in GIS and spatial analysis. The course is intended to provide students with a firm understanding of the theoretical/conceptual side of algorithms found in GIS software. We are concerned with the assumptions and underlying mathematical basis for widely-used techniques, and the degree to which analytical capabilities are constrained by those assumptions. Among the topics covered are methods for neighbourhood operation, map transformation, spatial interpolation, terrain analysis, network analysis, and spatial overlay. Other advanced topics such as fuzzy sets, and neural networks will also be covered. The emphasis is on the usefulness and limitations of competing algorithms, as opposed to optimal implementation.

The objectives are:

1) To provide students with a proper understanding of the usefulness and the limitations of GIS analytical techniques with the hope that students will observe these limitations when using these GIS techniques.

2) To develop students' analytical ability so that they will naturally investigate the limitations of GIS techniques which are new to them and thereby avoid misuse or abuse.

2. Prerequisites:
3. Evaluation and grading:

3.1 Components of Evaluation:

- Exercises (five of them) 40%
- Exam 1 30%
- Exam 2 30%

3.2 Grading policy:

Grades of exercises are based on:

1) the academic merit of your answers to the questions
2) clarity of answers, **NO BEATING AROUND THE BUSH**
3) concise and logical presentation, no one wants to flip through a messy assignment report looking for answers. Here is a general format for your presentation:

- **Question:**
 - Your answer and discussion
 - Your support documents (images, graphs, tables, etc.)

The grade for each of the exercises and examinations is reported as \(\frac{\text{points scored}}{\text{total points of exercise}} \). For example, an assignment has 20 points and your answer is worth 18 points then you should see \(\frac{18}{20} \) on your marked assignment.

Each assignment is worth of 20 points. 5 of these 20 points is for doing the computer work and 15 of them for answering questions.

3.3 Due date and time:

Each of the assignments will have a due day clearly written underneath the title of the assignment. The due time is the beginning of the lab session on the due day. Any assignment that is turned after the due time on the due day is considered late.

3.4 Penalty for late assignments:

The penalty of a late assignment is based on the number of days late (including weekends!). If an assignment is late less than 24 hours, it is considered 1 day late. If an assignment is late less than 48 hours but more than 24 hours, it is considered 2 days late, and so on. If you have to turn in an assignment late during the working hours and the instructor is not in his office, you can put it in the instructor’s mail box. However, the assignment will be considered to be turned in when the instructor takes it out of his mailbox.

Late assignments are penalized 10% per day. Here is the formula for calculating the points of a late assignment:

\[
\text{Points}_{\text{get}} = \text{Points}_{\text{scored}} - 0.1 \times \text{num_days_late} \times \text{Points}_{\text{scored}}
\]

The minimum value of \(\text{Points}_{\text{get}} \) is 0. Assignments handed in after the instructor has returned the graded assignment to class (usually a week after the due date) will receive no points.
4. Computer Environment and Software:

ARC/INFO and IDRISI will be used for the exercises.

5. Other Important Issues:

There may be a time that the class is full and there are people waiting to get into the class. Those of you who are registered for this class but later decide not to take the course, please let the instructor know as soon as possible so that he can add the people on the waiting list to the class list.

Only medical reasons may be taken as excuses for turning in an assignment late or missing a class. However, you must provide a written report from a medical doctor stating your inability to attend class and/or complete an assignment.

The instructor will certainly give you ample time for each assignment. There is no reason for him to be informed that the computer is down or the software is not working a day before the assignment is due. He will NOT take this as an excuse for a late assignment!

6. Course Materials:

6.1 Course text:

None. Relevant references will be given in class or at the class website.

6.2 Key texts:

6.3 Other GIS texts:

7. Intended Topics and Schedule:

Lecture 01: (Sept. 6)

Introduction

- Introduction to the course
- Classification of GIS Analytical Functions

Lecture 02: (Sept. 8)

Logic frameworks

- Fuzzy sets vs. Crisp sets

Lecture 03: (Sept. 13)

Neighborhood operations I

- Raster neighborhood operators (resampling and convolution)

Lecture 04: (Sept. 15)

Neighborhood operations II

- Raster neighborhood operators (filtering)

Lecture 05: (Sept. 20)

Digital Terrain Analysis I

- Basic operations on DEM

Lecture 06: (Sept. 22)

Digital Terrain Analysis II

- Drainage network extraction

Lecture 07: (Sept. 27)

Digital Terrain Analysis III
Slope partitioning

Lecture 08: (Sept. 29)

Map transformations I
Affine Transformation

Lecture 09: (Oct. 4)

Map transformations II
Rubber sheeting I

Lecture 10: (Oct. 6)

Map transformations III
Rubber sheeting II

Lecture 11: (Oct. 11)

Map transformations IV
Discrete Georeferencing

Lecture 12: (Oct. 13)

Spatial Autocorrelation I
Geary Index

Lecture 13: (Oct. 18)

Exam One (75 minutes)

Lecture 14: (Oct. 20)

Spatial Autocorrelation II
Moran Coefficient

Lecture 15: (Oct. 25)

Spatial Autocorrelation III
Joint count statistics

Lecture 16: (Oct. 27)

Spatial Autocorrelation IV
For other types of features and attributes

Lecture 17: (Nov. 1)

Spatial Autocorrelation V
Semivariogram (Construction)

Lecture 18: (Nov. 3)

Spatial Autocorrelation VI
Semivariogram (Modeling)

Lecture 19: (Nov. 8)

Spatial interpolation I
Process and Issue
Lecture 20: (Nov. 10)
 Spatial interpolation II
 Measures for evaluating spatial interpolation

Lecture 21: (Nov. 15)
 Spatial interpolation III
 Thiessen polygon (nearest neighbour)
 Triangulation

Lecture 22: (Nov. 17)
 Spatial interpolation IV
 Moving average
 Inverse distance weighting

Lecture 23: (Nov. 22)
 Spatial interpolation V
 Kriging

Lecture 24: (Nov. 29)
 Spatial interpolation VI
 Spline

Lecture 25: (Dec. 1)
 Spatial Indices and Lanscape Measures I
 Spatial centroids
 Shape Analysis

Lecture 26: (Dec. 6)
 Spatial Indices and Landscape Measures II
 Measures of landscape structures

Lecture 27: (Dec. 8)
 Network analysis
 Pathfinding

Lecture 28: (Dec. 13)
 Advanced Topics
 Neural networks

Lecture 29: (Dec. 15)
 Exam 2 (75 minutes)