1. Course Description:

This course focuses on the uses and applications of GIS techniques in solving practical geographic problems. It introduces a generic process for applying GIS techniques in geographic problem solving. The process includes conceptualization of a geographic problem and development of strategies for solving the problem in a GIS environment. The conceptualization focuses on decomposing of a given geographic problem into smaller but interconnected components. The development of strategies looks into specific GIS techniques for solving each of the smaller components so that the overall question can be addressed using GIS. The emphasis is not on the specifics of particular GIS techniques rather on the selection and use of various GIS techniques based on the domain knowledge dictating the problem at hand. The process is further illustrated via the analyses of several case studies of GIS applications in geography. These case studies range from human to physical geography. The course is divided into three basic components: introduction of the generic process of GIS application, case studies illustrating this process, and students projects using this process. Students are encouraged to select the disciplinary domains for their projects.

The objectives are: 1) To provide students with a generic process of solving geographic problems using GIS and to develop student's skills in conceptualizing geographic problems and in developing GIS strategies to solve the problems. 2) To provide student the practical experience on managing GIS projects.
2. Evaluation and grading:

2.1 Components of Evaluation:

- Midterm Exam 15%
- Exercises (four of them) 20%
- Student Project 50%
 - Planning documents 10%
 - Presentation 20%
 - Final report 20%
- Classroom Participation 15%
 - Attendance 5%
 - Discussion 10%

2.2 Grading policy:

Grades of exercises are based on:

1) the academic merit of your answers to the questions
2) clarity of answers, **NO BEATING AROUND THE BUSH**
3) concise and logical presentation, no one wants to flip through a messy assignment report and looks for answers.

The grade for each of the exercises and examinations is reported as \(\frac{\text{points scored}}{\text{total points of exercise}} \). For example, an assignment has 20 points and your answer is worth 18 points then you should see **18/20** on your marked assignment.

2.3 Due date and time:

Each of the assignments will have a due day clearly written underneath the title of the assignment. The due time is 5:30 p.m. on the due day. Any assignment which is turned after the due time on the due day is considered late.

2.4 Penalty for late assignments:

The penalty of a late assignment is based on the number of days late (including weekends!). If an assignment is late less than 24 hours, it is considered 1 day late. If an assignment is late less than 48 hours but more than 24 hours, it is considered 2 days late, and so on. If you have to turn in an assignment late during the working hours and the instructor is not in his office, you can put it in the instructor’s mail box. However, the assignment will be considered to be turned in when the instructor takes it out of his mailbox.

Late assignments are penalized 10% per day. Here is the formula for calculating the points of a late assignment:

\[
\text{Points get} = \text{Points scored} - 0.1 \times \text{num days late} \times \text{Points scored}
\]

The minimum value of \(\text{Points get} \) is 0. Assignments handed in after the instructor has returned the graded assignment to class (usually a week after the due date) will receive **no points**.
3. Prerequisites:
 Geog 377/CEE 357 or equivalent.

4. Computer Environment and Software:
 MapInfo on a PC platform will be used for the exercises. Students are free to choose whatever GIS packages on whatever platforms for their individual class projects.

5. Other Important Issues:
 Class attendance is accounted as part of classroom participation and classroom participation includes asking questions and engaging in discussion.

 There may be a time that the class is full and there are people waiting to get into the class. Those of you who are registered for this class but later decide not to take the course, please let the instructor know as soon as possible so that he can add the people on the waiting list to the class list.

 Only medical reasons may be taken as excuses for turning in an assignment late or missing a class. However, you must provide a written report from a medical doctor stating your inability to attend class and/or complete an assignment.

 The instructor and the TA will certainly give you ample time to complete each assignment. There is no reason for them to be informed that the computer is down or the software is not working a day before the assignment is due. They will NOT take this as an excuse for turning an assignment late!

6. Intended Topics and Tentative Schedule:

 Lecture 01: (Jan. 22)
 - Introduction to Geog. 578
 - The article in the New York Times
 - CNN articles on targeting voters
 - Mapping out the US sniper’s profile
 - Project Requirements

 Lecture 02: (Jan. 24)
 - An example of GIS application (neighborhood complaint)
 - Introduction to a systematic approach in GIS application
 - Conceptualization of geographic problems
 - **Student projects:**
 - Project ideas (students) I

 Lecture 03: (Jan. 29)
 - Implementation of strategies for solving geographic problems using GIS
 - **Student projects:**
 - Project ideas (students) II
Lecture 04: (Jan. 31)
Flooding scenarios for an insurance company
(Conceptualization)
Flooding scenarios for an insurance company
(Implementation)
Student projects:
Project ideas (students) III

Lecture 05: (Feb. 5)
Preparation of capstone statement
Examples of capstone statement (executive statement)
Student projects:
Project ideas (students) IV

Lecture 06: (Feb. 7)
Bank branch performance assessment
(Conceptualization)
Bank branch performance assessment
(Implementation)
Student projects:
Finalize student projects

Lecture 07: (Feb. 12)
Student projects:
Capstone statement for individual projects (class presentation)

Lecture 08: (Feb. 14)
Discussion of Project mini proposal

Lecture 09: (Feb. 19)
Student projects:
Presentation of Mini proposal (class presentation) I
During lab session of the week
Student projects:
Presentation of Mini proposal (class presentation) II

Lecture 10: (Feb. 21)
Conceptualization (class presentation) I

Lecture 11: (Feb. 26)
Conceptualization (class presentation) II
During lab session of the week
Student projects:
Conceptualization (class presentation) III
Lecture 12: (Feb. 28)
 Student projects:
 Implementation: virtual (class presentation) I

 (Project mini proposal due)

Lecture 13: (March 4)
 Implementation: virtual (class presentation) II
 During lab session of the week
 Implementation: virtual (class presentation) III

Lecture 14: (March 6)
 Student projects:
 Implementation: pseudo coding (class presentation) I

Lecture 15: (March 11)
 Student projects:
 Implementation: pseudo coding (class presentation) II
 During lab session of the week
 Implementation: pseudo coding (class presentation) III
 (Conceptualization document due)

Midterm: (March 13)

Spring break (March 15 – March 23)

Lecture 16: (March 25)
 Student projects:
 (students working alone on their projects: data collection)

Lecture 17: (March 27)
 Student projects:
 (students working alone on their projects: data collection)

Lecture 18: (Apr. 1)
 Student projects:
 (students working alone on their projects: data collection)
 (Virtual implementation document due)

Lecture 19: (Apr. 3)
 Student projects:
 (students working alone on their projects: actual implementation)

Lecture 20: (Apr. 8)
 Student projects:
 (students working alone on their projects: actual implementation)
Lecture 21: (Apr. 10)
Student projects:
Project progress report and Final project presentation and report guidelines
(Pseudo Coding Documentation Due)

Lecture 22: (Apr. 15)
Student projects:
(students working alone on their projects: actual implementation)

Lecture 23: (Apr. 17)
Student projects:
(students working alone on their projects: actual implementation)

Lecture 24: (Apr. 22)
Student projects:
(students working alone on their projects: actual implementation)

Lecture 25: (Apr. 24)
Student projects:
(students working alone on their projects: actual implementation)

Lecture 26: (Apr. 29)
Final Project Presentation (class presentation) I

During lab session of the week
Final Project Presentation (class presentation) II

Lecture 27: (May 1)
Final Project Presentation (class presentation) III

Lecture 28: (May 6)
A physical geography case study moderning soil survey

Lecture 29: (May 8)
(Final report due)

7. Course Materials:
There is no text for this course but some references are listed below

7.1 GIS Application Oriented:
Heit, Michael, H. Dennison Parker, and Art Shortreid (eds.), 1996. GIS Applications in
Oxford University Press, New York.

7.2 Other GIS Texts:

