GEOG 377: An Introduction to Geographic Information Systems
Date: Feb. 26, 2002

Instructor:
A-Xing Zhu, 421 Science Hall, Phone: 262-0272, axing@geography.wisc.edu

Lecture Hours:
Tues. and Thurs. 4:00 p.m. - 5:15 p.m. (180 Science Hall)

Lab Hours:
Lab 301: Monday 6:00 p.m. - 8:00 p.m. (380 Science Hall)
Lab 302: Tuesday 6:00 p.m. - 8:00 p.m. (380 Science Hall)
Lab 303: Tuesday 1:20 p.m. - 3:15 p.m. (380 Science Hall)
Lab 304: Thursday 9:55 a.m. - 11:45 a.m. (380 Science Hall)

Office Hours:
Tues. 1:30 p.m. - 3:00 p.m.
Thurs. 2:00 p.m. - 3:30 p.m.

1. Description:
Geographic Information Systems (GIS) deals with the analysis and management of spatial information. This course offers an introduction to methods of managing and processing geographic information. Emphasis will be placed on the nature of spatial information, spatial data models and structures, data input, manipulation and storage, spatial analytic and modelling techniques, and error analysis.

The course is made of two components: the lectures and the labs. In the lectures, the conceptual elements of the above topics are explained. The labs are designed in such a way that students will gain first-hand experience in data input, data management, data analyses, and result presentation in a geographical information system.

2. Objectives:
In general, this is an ice-breaking course into GIS and serves as the foundation course for other advanced courses in GIS. The basic objectives of this course for students are:

1) To understand the basic structures, concepts, and theories of GIS.
2) To gain a hand-on experience with daily routines of GIS operations.

3. Prerequisites:
Introductory courses in environmental or mapping sciences, and an introductory course in computer science (Comp Sci 110 or Comp Sci 132) or equivalent.

4. Computing Environment and Software:
Arc/Info (both the vector and the raster components) will be used for class assignments to illustrate the practical use of certain geographic information processing concepts and techniques. ArcView GIS will be introduced for result presentation.

5. Grading:
5.1 Components:
Exercises ... 40%
Midterm Exam .. 25%
Final Exam ... 35%

5.2 Grading policy:

Grades of exercises are based on:
1) academic merit of your answers to the questions
2) conciseness of answers. **NO BEATING AROUND THE BUSH**
3) organization of presentation. No one wants to flip through a messy assignment report looking for answers. Here is a general format for your presentation:

Question:
Your answer and discussion
Your support documents (images, graphs, tables, etc.)

The grade for each of the exercises and examinations is reported as \(\frac{\text{points scored}}{\text{total points of exercise}} \). For example, if an assignment is worth 20 points and your answers score 16 points then you should see 16/20 on your marked assignment.

5.3 Due date and time:

Each of the assignments will have a due day clearly written under the title of the assignment. The due time is the beginning of the lab session on the due day. Any assignment that is turned in after the due time on the due day is considered late. As you know, late assignments will receive penalty.

5.4 Penalty for late assignments:

The penalty for a late assignment is based on the number of days late (including weekends). If an assignment is late less than 24 hours, it is considered 1 day late. If an assignment is late less than 48 hours but more than 24 hours, it is considered 2 days late, and so on. Late assignments are penalized 10% per day. Here is the formula for calculating the points of a late assignment:

\[
\text{Points get} = \text{Points scored} - 0.1*\text{num days late} * \text{Points scored}
\]

The minimum value of Points get is 0. Assignments handed in after the TA has returned the graded assignment to class (usually a week after the due date) will receive no points.

6. Other Important Issues:

This class is always full at the beginning of each semester and there are people waiting to get into the class. Those of you who are registered for this class but fail to show up in the first week of classes (unless I am notified ahead of time!), I will have to remove your name from the class list and make the space available for the people on the waiting list.

Sickness often gets in the way of completing assignments, particularly after a long weekend. If sickness is used as an excuse for turning in an assignment later or missing an examination, we (the TA and the instructor) need to see a written report from a medical doctor stating your inability to attend class and/or to complete an assignment.

We will certainly give you ample time to complete each assignment. There is no reason for us to be told that the computer is down or the software is not working a day before the assignment is due. This will **NOT** be taken as an excuse for a late assignment!
7. Course Materials:

7.1 Text:

7.2 Other key texts:

7.3 Other texts:

8. Covered Topics:

8.1. An Overview:

8.2 Intended Lectures:

Lecture 1: (Jan. 22)
Introduction (I)
An example of GIS application
Introduction to Geog. 377

Lecture 2: (Jan. 24)
Introduction (II)
The nature of geographical information
What is GIS

Lecture 3: (Jan. 29)
Data Representation (I)
Measuring Systems
Location: coordinate systems

Lecture 4: (Jan. 31)
Data Representation (II)
Measuring Systems (continued…)
Topology: Basic geometric elements
Attributes: data types
Data in Computers
Data Models:
Introduction: data models: spatial and attribute

Lecture 5: (Feb. 5)
Data Representation (III)
Data Models:
Aspatial Data Models: Relational Tables

Lecture 6: (Feb. 7)
Data Representation (IV)
Data Models:
 Spatial Data Models:
 Raster Data Models
 (Demo of raster data models and computer display of raster image)

Lecture 7: (Feb. 12)
 Data Representation (V)
 Data Models:
 Spatial Data Models:
 Vector Data Models I

Lecture 8: (Feb. 14)
 Data Representation (VI)
 Data Models:
 Spatial Data Models:
 Vector Data Models II
 (Demo of vector data models)

Lecture 9: (Feb. 19)
 Data Representation (VII)
 Data Models:
 Spatial Data Models:
 TIN:
 Summary of Spatial Data Models (Raster v.s. Vector and TIN)

Lecture 10: (Feb. 21)
 Data Representation (VIII)
 Summary of Data Models:
 Linking attribute data with spatial data
 Recent Development of Data Models
 (Demo of data models in computer)

Lecture 11: (Feb. 26)
 GIS Database Creation and Maintenance (I)
 Data Input (spatial and thematic)

Lecture 12: (Feb. 28)
 GIS Database Creation and Maintenance (II)
 Data Editing (spatial and thematic)

Lecture 13: (Mar. 5)
 GIS Database Creation and Maintenance (III)
 DBMS and its use in GIS

Lecture 14: (Mar. 7)
 Midterm Examination (75 minutes)

Lecture 15: (Mar. 12)
 GIS Database Creation and Maintenance (IV)
 Coordinate Transformation

Lecture 16: (Mar. 14)
 GIS Database Creation and Maintenance (V)
 Metadata
 NSDI
Database creation Guidelines
(Computer demo)

Lecture 17: (Mar. 19)
Data Analysis (I)
Introduction
Spatial Queries
Classification of GIS analytical functionality

Lecture 18: (Mar. 21)
Data Analysis (II)
Measurement operations
Connectivity operations

Lecture 19: (Apr. 2)
Data Analysis (III)
Interpolation operations

Lecture 20: (Apr. 4)
Data Analysis (IV)
Digital terrain analysis

Lecture 21: (Apr. 9)
Data Analysis (V)
Statistical operations

Lecture 22: (Apr. 11)
Data Analysis (VI)
Spatial Overlay

Lecture 23: (Apr. 16)
Data Analysis (VII)
Computer Demo of GIS Analysis

Lecture 24: (Apr. 18)
Accuracy of Spatial Databases

Lecture 25: (Apr. 23)
GIS Output
(Computer demo)

Lecture 26: (Apr. 25)
Spatial Modeling with GIS
(The use of GIS to solve Geographic Problems)

Lecture 27: (Apr. 30)
Establishing A GIS Site

Lecture 28: (May 2)
Issues and Trends, GIS System Overview:

Lecture 29: (May 7 and May 9)
Course Summary

FINAL EXAMINATION (2 hours) (Tuesday, May 14, 7:25 p.m.)